Enhancement of mechanical and electrical properties of continuous-fiber-reinforced epoxy composites with stacked graphene
نویسندگان
چکیده
Impregnation of expandable graphite (EG) after thermal treatment with an epoxy resin containing surface-active agents (SAAs) enhanced the intercalation of epoxy monomer between EG layers and led to further exfoliation of the graphite, resulting in stacks of few graphene layers, so-called "stacked" graphene (SG). This process enabled electrical conductivity of cured epoxy/SG composites at lower percolation thresholds, and improved thermo-mechanical properties were measured with either Kevlar, carbon or glass-fiber-reinforced composites. Several compositions with SAA-modified SG led to higher dynamic moduli especially at high temperatures, reflecting the better wetting ability of the modified nanoparticles. The hydrophilic/hydrophobic nature of the SAA dictates the surface energy balance. More hydrophilic SAAs promoted localization of the SG at the Kevlar/epoxy interface, and morphology seems to be driven by thermodynamics, rather than the kinetic effect of viscosity. This effect was less obvious with carbon or glass fibers, due to the lower surface energy of the carbon fibers or some incompatibility with the glass-fiber sizing. Proper choice of the surfactant and fine-tuning of the crosslink density at the interphase may provide further enhancements in thermo-mechanical behavior.
منابع مشابه
Experimental Study of The Mechanical Properties of Banana Fiber and Groundnut Shell Ash Reinforced Epoxy Hybrid Composite
Effect of addition of filler material to the natural fiber composite was experimentally investigated. Composites are manufactured by the conventional hand-layup method. All composites are made with a fixed banana fiber with 15% weight fraction addition of different weight fraction of (0, 3, 5, 7.5%) groundnut shell ash is added to the composite. Tensile, hardness, impact and compressive strengt...
متن کاملMECHANICAL CHARACTERIZATION AND ANALYSIS OF RANDOMLY DISTRIBUTED SHORT BANANA FIBER REINFORCED EPOXY COMPOSITES
Short banana fiber reinforced composites have been prepared in laboratory to determine mechanical properties. It has been observed that as soon as the percentage of the banana fiber increases slightly there is a tremendous increase in ultimate tensile strength, % of strain and young modulus of elasticity. Reinforcement of banana fibers in epoxy resin increases stiffness and decreases damping pr...
متن کاملCreep Behavior of Basalt and Glass Fiber Reinforced Epoxy Composites
The creep behavior of basalt fiber reinforced epoxy (BFRE) and glass fiber reinforced epoxy (GFRE) composites was studied through tensile testing at high temperature. To study the effect of reinforcing epoxy, the micro glass powder (MGP) was added at various volume percentage into the epoxy resin in BFRE composites. The initial strain for all the specimens were evaluated and compared with each ...
متن کاملAn experimental investigation of novel hybrid epoxy/glass fibers nanocomposite reinforced with nanoclay with enhanced properties for low velocity impact test
The application of nanoparticles in order to enhance the composites properties has been recently attracted many researchers' attentions. To increase the mechanical and physical properties of the composites, the nanoparticles have no significant effect on the weight and nanostructure of composites. One of the well-known nanoparticles is the Nanoclay (NC) that have been widely used in industries ...
متن کاملDynamic Characteristics of Functionalized Carbon Nanotube Reinforced Epoxy Composites: An Experimental Approach
The effects of amine functionalization of carbon nanotubes (CNTs) and CNTs weight percent (wt. %), on the first bending natural frequencies and damping properties of CNT/epoxy composites are investigated in this paper. CNTs and amine functionalized CNTs (AFCNTs), with two different weight percentages, are used to manufacture the beam shaped specimens. Epoxy, CNT/epoxy (0.25 and 0.5 wt. % of CNT...
متن کامل